解析同步發電機並聯條件及案例研討

摘要

關鍵詞:整步、發電機、比壓器、並聯、 效率。

一、前言

現代之發電機同步並聯電控裝置,依 系統側、機組側三相電壓輸入訊號,控制 機組鄉電壓、轉速接近系統運轉狀態,並 依機組與系統間的頻率差及其相位角度變 化速率,決定機組併入系統時機。東部 B 水力發電廠於試運期間,在機組整步與副 步並聯之檢測項目中,觀察到系統側 PT-3 二次側之線電壓保持著對稱與平衡狀態, 而相對地三相電壓呈現相角偏移及不平衡 現象,另於機組側 PT-1、PT-2 之相電壓、 線電壓兩者均維持三相對稱與平衡關係; 系統側相電壓不平衡之異常情況,影響機 組整步效能,亟需深入檢討同步訊號失真 肇因及改善整步與並聯時機之解決方案。

二、系統設計與結構

B 電廠依 a-b-c 系統旋轉相序作為發

台雷綜合研究所	鄭強
石門電廠	李重億
台雷綜合研究所	范振理
國立台灣科技大學	萧弘清

電機組、主變壓器之設計基礎,主變壓器 依 Ynd1 方式結線,主變壓器高壓側電壓 超前低壓電壓 30°,而機組與系統並聯之 斷路器位於主變壓器 13.2 kV 低壓側,因 而可簡化應用比壓器、輔助比壓器補償主 變壓器相角位移之複雜結線之相位補償結 構。

B 電廠之系統單線圖,如圖 1 所示; 系統與機組架構檢述如下:(1)161 kV 系統 電壓,經 YnD1 主變壓器降壓至 13.2 kV 低壓側,經相間

圖 1 B 电廠機組單線圖

絕緣匯流排(IPBD)連接至 110 斷路器系統 (側;(2)機組電樞端亦利用 IPBD 連接至 110 斷路器機組側;(3)三組比壓器屬 Ynyn 接 線,系統側比壓器為 PT3,機組側比壓器 分別為 PT2、PT1;(4)PT3、PT1 之 Vbn 電壓訊號輸入至同步檢定裝置,依機組與 系統之電壓、頻率差進行整步,於兩者相 角接近同相位時機,投入斷路器,完成機 組與系統之並聯程序。

三、發電機整步標準與技術

機組首次併入系統前,需特別予以確認旋轉相序一致。機組併入系統前,調整 電機之電樞電壓、頻率、確認相序之控制 程序,稱為整步。在整步過程中,並聯裝 置依橫跨於斷路器兩側之系統電壓 (Vrunning)、發電機電壓(Vincoming)對時 間變化關係,及其電壓包絡線的振幅、相 序、相位、頻率差,控制機組之整步必要 條件。

當機組與系統間電壓相位趨近零度時,完成斷路器投入,係機組整步並聯最 佳的操作狀態;其次視機組整步頻率,要 求提前於同相位電氣角度±10°範圍內,併 入系統,係整步之容許極限值。整步條件 中,機組轉速稍高系統較佳,可依同步儀 (synchroscope)指針以順時針方向旋轉及 其約需15秒鐘以上轉動一圈,易及頻率差 <0.067 Hz 為佳。在同步前,機組之電樞電 壓調整在 0~5%範圍中[1,2]。機組整步相 關限制值,整理如表 1。

機組於電壓稍高於系統之整步條件 下,發電機可於(1)轉速稍高、提前角度併 入系統,(2)轉速稍高、同相位併入系統, (3)轉速稍高、延遲角度併入系統,(4)轉速 稍低、提前角度併入系統,(2)轉速稍低、 同相位併入系統,(3)轉速稍低、延遲角度 併入系統等6種運轉狀態。其中機組提供 系統虛功率是其整步之必要條件,而機組 於併入系統瞬間,機組提供實功率或是自 系統吸收實功率,是由機組轉速高低及提 前或延遲角度併入系統之條件所決定。上 述現象可依機組整步併入系統量測值,經 分析演算予以證實。

表1 發電機整步限制條件

斷路器閉合角度	±10°
機組電樞電壓與系統電壓差	0~+5%
機組與系統之頻率差	±0.067 Hz

發電機之性能在過電流及機械應力 之設計考慮因素上,並未涵蓋整步不良的 異常狀態,因而應用自動整步或同步監測 方案,有助於控制機組的整步條件,其效 能較人工整步並聯為優。若機組整步條 件,可滿足上述限制值,有助於保障機組 的運轉安全。若超出上述整步限制範圍而 併入系統,稱之為"整步不良(faulty synchronization)"。整步不良可導致強烈的 同步化短時間電流以及暫態轉矩,並可能 導致機組機械結構故障。

若系統屬於低電抗之無限匯流排,機 組整步不良併入系統於 180°或 120°異相 位情況下,可能導致部分或全部定子、轉 子線圈損壞,損壞情況嚴重時,需以重繞 線圈或是需要更換轉子方式修復。其次, 當機組跳脫於整步不良情況下,其電機設 計係以轉動慣量將機組減速至停機狀態。 樣組整步不良停機後,需針對定子線圈 對路數投入角度等設定值,可參考 IEEE 標準之整步限制條件,提供保障機組運轉 安全的重要資訊與策略。

四、機組整步電量分析

在整步程序中,因待並聯機與系統間 的頻率差不為零,其間的電壓差幅值及相 位角度變化量,可以電壓包絡線表示;例 如待並聯機與系統電壓在同相位(in-phase) 時間點上,此一包絡線電壓為零;反之, 待 並 聯 機 與 系 統 電 壓 相 位 偏 移 180°(out-of-phase),可產生兩倍幅值之電 壓包絡線;為準確的在十二點鍾位置關閉 開關完成並聯手續,必須考慮斷路器投入 機構的動作延時特性,在適當的提前角度 操作斷路器,使得斷路器在閉合的瞬間, 機組端電壓與系統電壓無相位差的最佳情 況下,完成整步並聯程序。

1.電量計算之應用

機組整步並聯電量分析是以三相電 壓、電流量測值為基底,可依分析項目分 別計算線、相電壓、零相序電壓、電壓包 絡線瞬時值、瞬時功率、整步頻率、斷路 器投入角度等數值。電壓包絡線分析結 果,亦可與三暗法、兩明一暗法同步燈之 應用法則一致[3]。

以交流電壓量測值為基底,計算線電 壓、相電壓、整步之電壓包絡線、機組併 入系統相位角度、瞬時功率、平均功率、 電容電壓等關係式說明如下:

(1) 交流電訊號

電壓之時域、頻域、電流、頻率、週 期、相位角度、瞬時功率等關係,表示如 下:

$$v_{an}(t) = A_a \cos(\omega t - \phi_a) \tag{1}$$

$$V(j\omega) = Ae^{j\phi} = A \angle \theta^{\circ} \tag{2}$$

$$i_a(t) = A_{a'} \cos(\omega t - \phi_{a'}) \tag{3}$$

$$f = \frac{1}{T}(cycle / \sec, Hz) \tag{4}$$

$$\omega = 2\pi f (rad / sec) \tag{5}$$

$$\phi = 2\pi \frac{\Delta t}{T} (rad) = 360^{\circ} \frac{\Delta t}{T} (deg)$$
(6)

待並聯機的整步頻率稍高於系統頻 率,機組併入系統瞬間為輸出功率的發電 機狀態;反之在機組頻率稍低時,是以輸 入功率的電動機狀態併入系統,在此情況 下,對系統衝擊較高;瞬時功率及平均功 率,計算公式如下:

$$p_a(t) = v_{an}(t)i_a(t) \tag{7}$$

$$P_{av} = \frac{1}{T} \int_0^T p(t) dt \tag{8}$$

同步機可由轉矩方程式觀察響應狀態,電機之電磁轉矩與每極的合成氣隙磁 通 Φ_R 、直流磁場繞組的磁動勢 F_f 、及兩磁 軸之夾角 δ_{Rf} 決定;同步機之兩磁軸夾角 δ_{Rf} ,由轉矩為正或為負,決定電機為發電 機或電動機響應。

$$T = \frac{\pi}{2} \left(\frac{\pounds }{2} \right) \Phi_{\rm R} F_f \sin \delta_{\rm Rf} \tag{9}$$

由機組與系統三相電壓合成之電壓 包絡線,可依相別對應連接或交錯連接方 式,獲得三暗整步法或兩明一暗整步法之 電壓包絡線。兩明一暗整步法三相包絡線 依序到達峰值之相序,由 f2-f1 之符號決 定;當 f2-f1為正時,表示待並聯機組頻率 稍高,包線線依序到達峰值順序為 ea-ec-eb;當 f2-f1為負時,表示待並聯機組 頻率稍低於系統,包線線依序到達峰值順 序為 ea-eb-ec;當 b 相包絡線電壓進入零點 時,為機組最佳的同步並聯時機,故稱之 為兩明一暗整步法。電壓包絡線方程式, 表示如下:

$$v_{a_{envelope}} = \sqrt{2V} \sin \left[2\pi (f_2 - f_1)t \right]$$

$$v_{b_{envelope}} = \sqrt{2V} \sin \left[2\pi (f_2 - f_1)t + 120^\circ \right] \quad (10)$$

$$v_{c_{envelope}} = \sqrt{2V} \sin \left[2\pi (f_2 - f_1)t - 120^\circ \right]$$

計算斷路器提前投入角度,係為掌握 機組在同相位時機併入系統,計算公式如 下:

$$\theta = 360^{\circ} \times \Delta f \times t \tag{11}$$

式中

θ = 斷路器提前投入角度

 $\Delta f = 機組與系統間頻率差$

t = 斷路器投入操作時間

機組併入系統時,在電力的、機械的 負載突然改變情況下,磁極角度將由一穩 態移轉於另一穩態。電機轉子及其聯結的 轉動慣量,使得此種運轉狀態的轉換作用 不能突然完成,因而於電機的機械輸入功 率,在短時間內維持一定值,於機械輸入功 大時處度減緩;故電機於狀態轉換加時, 電機變加速;電功率輸出增加時, 電機緩;故電機於狀態轉換期間 發展出一電力暫態振盪;而同步化功率 (Ps),是使旋轉磁極拖回至同步位置的一 種作用力矩,故於磁極角度超過 90°時, Ps 改變為負值,可產生一使磁極推向失步 之力矩,成為不穩定狀態,同步化功率瞬 時方程式如下:

$$\Delta P = \frac{dP}{d\theta} \times \Delta \theta = P_s \times \Delta \theta$$

$$P_s = kP_0 \cos \theta = \frac{E_i}{E_{s0} + E_{q0}} P_0 \cos \theta$$
(12)

式中

$$E_s = 漏電抗電壓$$

 $E_q = 橫向磁束電壓$
 $E_i = E_s \cdot E_q$ 之和
 $P_0 = 額定功率$

2.機組解聯後系統側 PT1 電量分析

本技術服務於B電廠機組廠房, 擷取 PT3、PT1及CT6之三相電壓、電流訊號; 系統側及機組側運轉中、解聯之三相電壓 量測值,如表 2~3 所示;機組運轉中、解 聯及並聯之三相電壓、電流波形,如圖 2(a) 所示;圖中各通道之電量名稱如下: $V_{an gen} \cdot V_{bn gen} \cdot V_{cn gen} \cdot I_{a gen} \cdot I_{b gen} \cdot I_{c gen} \cdot$ $V_{an_sys} \cdot V_{bn_sys} \cdot V_{cn_sys} \cdot V_{ab_sys} \cdot V_{bc_sys} \cdot$ Vca sys;機組運轉中、解聯及同步並聯量測 值計算而得之電量波形,如圖 2(b)所示; 圖中各記錄通道說明如下: Ch1 系統側相 電壓量測值之三相電壓和計算波形 (V0 n svs)、ch2 系統側線電壓之三相電壓和 計算波形(V0 LL svs)、ch3 系統側相電壓計 算值之三相電壓和計算波形(Vo abcn sys)、 ch4 發電機相電壓量測值之三相電壓和計 算波形(Vongen)、以發電機線電壓計算值為 基底之三相電壓和計算波形(Vo LL gen)[4]。

圖 2(b)波形顯示機組於解聯運轉模式 中,系統側三相相電壓之計算合成波形不 為零,而線電壓計算值近似零,其相電壓、 線電壓波形,如圖 3 所示。

機組解聯後, PT-3 三相相電壓時間域 量測值為: Van 7.190 kV、Vbn 8.635 kV、 Vcn 7.117 kV,幅值變化 0.944、1.129、0.929 標公;經波形比對結果顯示:相電壓幅值、 相位發生偏移,而線電壓幅值僅輕微波 動,相位未變動;經分析其相電壓幅值、 角度變動,與主變壓器低壓側非接地系 統,及 IPBD 對地電容不平衡有關,因而 三相之電容電壓呈現出電壓幅值、相角不 平衡特徵。此一現象將影響機組整步程

	\mathbf{v}_{an} / \mathbf{v}_{ab}	V_{bn} / v_{bc}	V_{cn} / v_{ca}	
解聯前	7.615 kV	7.646 kV	7.659 kV	
	13.184	13.263	13.243	
	kV	kV	kV	
解聯中	7.190 kV	8.635 kV	7.117 kV	
	13.106	13.200	13.194	
	kV	kV	kV	
表3 機組解聯前、解聯 PT1 之系統電壓值				
	Van	V _{bn}	V _{cn}	

衣∠ 饿俎胖咿刖、胖咿┎Ⅰ ⊃∠厼��电	衣 乙	衣 4	マイ 機組解聯	刖、肝聊	i PI 3 2	こ糸統	龟凰值
-----------------------------	-----	-----	---------	------	----------	-----	-----

序之電壓調整、掌握同相位時機之控制效 能,亟需檢討改善方案,恢復自動並聯裝 置之既有性能[5,6]。

圖 2(a) 機組-系統三相電壓、電流量測波形

圖 2(b) 機組、系統三相電壓計算之波形

圖 3 機組解聯後,系統側 PT3 之相電壓、 線電壓波形

3.機組整步之電量分析

早期機組之整步條件,藉指示燈以三 暗法或兩明一暗法,顯示相序、頻率、電 壓等整步條件,本文首先採用三暗法,以 相及線電壓包絡線計算波形,檢討整步條 件。

在機組整步期間,電壓包絡線同時遞 增或遞減,顯示機組與系統 a-b-c 相序相 同,相電壓及線電壓包絡線波形,如圖 4 所示;(1)以相電壓組成之三相電壓包絡 線,並未同時指示出機組與系統之同相位 時機, a 相滯後 1.12 sec, b 相約略為同相 位, c 相提前約 1.23 sec;(2)以線電壓計算 之三相包絡線電壓波形,同時通過零點, 清晰顯示出機組與系統間的同相位時機; PT-3 二次電壓幅值與相位發生偏移,係造 成相電壓包絡線失衡的主要因素,將嚴重 影響自動並聯裝置、手動並聯之同步儀偵 測同步點的準確性。

圖 4 機組整步之相電壓、線電壓包絡線波形

4.分析機組整步及併入系統狀態

機組整步時,電壓控制稍高於系統約 1.005 標公,機組併入系統前,系統頻率為 59.9978 Hz,機組頻率控制在 59.9476 Hz, 頻率較系統略低 0.0502 Hz;解析在此狀態 下的相電壓、線電壓包絡線變動情況,顯 示機組進入同相位約可持續 150 ms,斷路 器足以在此時間中完成投入操作,而自動 同步檢定裝置輸出斷路器投入訊號延遲, 導致機組延遲-1.9809°併入系統;機組整 步、併入系統之運轉數值,如表 4 所示; 機組整步、併入系統之相/線電壓包絡線波 形,如圖 5 所示。

機組於電壓稍高、頻率稍低於系統情況下,併入系統瞬間,機組供應系統虛功率,而系統提供機組實功率,令機組加速至同步速度,機組慣性將產生同步化振盪功率。其次參考相電壓、線電壓繪製之包絡線,檢討機組整步之電壓控制顯示輔助比壓器適當改變電壓比例,惟無法補償其電壓相角偏移,因而影響自動並聯裝置確 實掌握同步並聯時機,此一現象係非接地 系統採用相電壓延伸之問題。

圖 5 機組併入系統之相電壓、線電壓 包絡線波形

表4 機組整步與併入系統數值

包絡線	同步角度(°)	$\Delta t (ms)$	頻率(Hz)
Van	未抵同步點		f _{sys}
V _{bn}	未抵同步點		59.9978 £
V _{cn}	-7.2513	-401.306	¹ gen 59 9476
V _{ab}	-1.9809	-109.613	Δf 0.0502
V _{bc}	-1.9809		
V _{ca}	-1.9809		

5.機組併入系統瞬間電量分析

機組併入系統瞬間之同步化振盪電流,解析如下:a-b-c 三相電壓幅值,如表 5所示;三相電流最大值或最小值為46.133 A(0.014 p.u.)、40.933 A(0.0125 p.u.)、 -54.667 A(0.0167 p.u.),如表 5 所示;機組 與系統並聯瞬間之電動機振盪功率,a-b-c 相分別為: -464.035 kva(0.012 p.u.)、 -432.583 kva(0.011 p.u.)、 -581.482 kva(0.015p.u.), a-b-c 相之消耗電力為: -89.844 kW(2.30 m p.u.)、-128.265 kW(3.28 m p.u.)、-119.967 kW(3.06 m p.u.),如表 6 所示。機組並聯之第 2 次振盪電量分析, 如表 7~8 所示,三相電壓、電流波形,如 圖 6 所示;

表 5 機組整步並聯 PT1、CT3 電量數值 (第1次振盪)

	Van	V _{bn}	V _{cn}		
Duration: 328.900 ms, Samples: 3290.					
RMS :	7.562 kV	7.594 kV	7.656 kV		
	Ia	I _b	Ic		
RMS :	18.577 A	20.983 A	22.103 A		
Max. :	46.133 A	40.933 A	25.733 A		
Min. :	-21.200 A	-32.133 A	-54.667 A		

表6機組整步並聯PT1、CT3之瞬時 雷量對值

电主数值				
	S _a (kva)	S _b (kva)	S _c (kva)	
Duration: 328.900 ms, Samples: 3290.				
Max. :	139.642	87.489	120.888	
Min. :	-464.035	-432.583	-581.482	

表 7	機組整步並聯 PT1、CT3	電量數值
	(第2次振盪)	

		Van	V _{bn}	V _{cn}
	Durati	3290.		
	RMS :	7.554 kV	7.622 kV	7.653 kV
I		Ia	Ib	Ic
	RMS :	17.036 A	13.246 A	12.062 A
	Max. :	35.333 A	28.533 A	25.467 A
	Min. :	-32.800 A	-25.733 A	-28.533 A

表 8 機組整步並聯 PT1、CT3 之瞬時 電量數值

0 2 3 1 -				
	S _a (kva)	S _b (kva)	S _c (kva)	
Duration: 328.900 ms, Samples: 3290.				
Max. :	342.301	251.140	264.119	
Min. :	-90.867	-132.691	-150.136	

同步化功率振盪波形,如圖7所示。機組 併入系統,在7.39964 秒時間,同步化電 流、功率共交錯振盪 16 次,易及機組併入 系統瞬間之功率為負值,電流經阻尼振盪 衰減至零,瞬時功率轉換為正值;並依此 規則交替循環,逐漸恢復至穩定狀態。

圖 6 機組整步-並聯之三相電壓、同步化 電流波形

圖 7 機組整步-並聯之三相同步化電流、 功率波形

五、改善建議

B 電廠之主變壓器屬 Ynd1 結線性 質,系統 161 kV 經主變壓器降壓至 13.8 kV,主變壓器低壓側端子經 IPBD 連接至 110 斷路器系統側,發電機組應用 110 斷 路器執行與系統並解聯操作。在機組與系 統解聯情況下,於 13.8 kV 匯流排觀察之 系統電壓,係經主變壓器轉換隔離為非接 地系統。中性點接地之 PT3 並不會改變主 變壓器 D 側之非接地系統特性, IPBD 對 地分佈電容受到導體排列方式、相間及對 地距離等參數影響其對地電容分佈不平 衡,亦為相對地電壓不平衡之肇因。

機組解聯中,由 PT3 二次側相電壓幅 值變化分別為 0.944、1.129、0.929 標么; 依瞬時值之浮點計算其三相電壓和之幅值 達 3.247 kV、0.425 p.u.,亦即此三相電壓 相角偏移,而放大其零相序電值。在此情 況下,應用輔助比壓器可改善b相電壓振 幅,有助於改善機組整步之電壓調整效 能;依據三暗法電壓包絡線之解析結果顯 示:由相電壓和成之電壓包絡線,三相電 壓包絡線並未同時到達最小值,因而無法 令自動並聯裝置精準掌握整步之同相位時 機,導致機組延遲 2°併入系統。

機組在解聯前後,PT3 二次側線電壓 瞬時值之和僅有 299.462 V、0.039 p.u.,顯 示系統側之三相電壓平衡且對稱,因而比 壓器之二次側線電壓可正確反應一次側電 壓波形與相角,此觀點可藉三暗法電壓包 絡線之解析結果,如圖 8 予以驗證;亦即 由線電壓和成之三相電壓包絡線,顯示同 時達到最大值及最小值,因而在自動並聯 裝置輸入訊號正確情況下,即可依預設值 正確掌握同相位時機,將機組併入系統運 轉。在改採線電壓作為自動並聯裝置之輸 入訊號,需將輔助比壓器修訂為 1:1 匝比 值。

發電機之電樞繞組中性點經電抗接 地,屬接地系統,機組於併入系統及整步 情況下,PT1 二次側之相電壓、線電壓訊 號,均維持在對稱且平衡狀態。

圖 8 三暗法之線電壓包絡線波形

六、結論

同步發電機整步與並聯之電量分 析,可依機組與系統變聯於主變壓器高壓 側或是低壓側決定其設計條件,機組若於 主變壓器高壓側與系統並聯,需考慮變壓 器 Dynl1 繞組結構之相角位移,因而並聯 盤系統與機組側輸入電壓訊號, 需應用 2 具以上之輔助比壓器補償主變壓器之相位 移,因而在設計、現場組裝及校核作業上 較為複雜。反之機組與系統並聯於主變壓 器機組側,直接應用 Ynyn0 之比壓器,即 可將電壓訊號輸入自動並聯裝置,並不需 要考慮主變壓器高低壓側相角位移的因 素,可簡化比壓器二次電路及輔助比壓器 之結線設計,但是於實際運轉案例中,顯 示設計者並未考慮非接地系統之三相電壓 性質,令同步裝置未能掌握同相位併入系 統時機,影響機組同步化暫態響應及整步 效能。

本文應用 IEEE 有關發電機之標準文 獻臚列之基本要求與門檻條件,作為機組 整步性能評估之依據。而系統側相電壓、 線電壓、機組側相電壓及電流量測值,可 式分析需求合成電壓包絡線,解析機組併 入系統之相角及其對機組同步化瞬時功率 的影響等資訊,確認整步不良之問題所 在,提出採取線電壓訊號之系統具體改善 對策,有效解決整步訊號失真之問題。

- 七、參考文獻
- IEEE Std C50.12-2005, "IEEE Standard for Salient-Pole 50 Hz and 60 Hz Synchronous Generators and Generator/Motors for Hydraulic Turbine Applications Rated 5 MVA and Above".
- [2] IEEE Std C50.13-2005, "IEEE Standard for Cylindrical-Rotor 50 Hz and 60 Hz Synchronous Generators Rated 10 MVA and Above".
- [3] Bhag S. Guru (2001) Electric Machinery and Transformers(3th eds), Oxford, New York.
- [4] 鄭強, 2012, TPRI G7.8 2102-0132 技 術報告,台北。
- [5] IEEE Std 142TM-1991, IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems (IEEE Green Book).
- [6] IEEE Committee Report, "Potential Transformer Application on Unit Connected Generators," *IEEE* Transactions on Power Apparatus and Systems, vol. 91, pp. 24–28, Jan./Feb. 1972.