開關突波對變壓器之衝擊與防制對策

台電綜合研究所 范振理 鄭 強 廖清荣 楊金石

摘要

本文模擬分析新建發電廠之開關突波 過電壓情形,避免因開關操作引起之突波 電壓損壞發電廠主變壓器而影響發電。本 文蒐集分析國內外相關之事故案例,並依 新建發電廠特性,利用電磁暫態程式模擬 分析各種不同組合之開關突波,並研提開 關突波之防制策略。

ABSTRACT

Taiwan Power Company (TPC) is planning to construct a new power plant in central Taiwan. The unit capacity is the largest of fossil power plant in TPC. The objective of this study is to examine the switching over-voltage level. This paper describes the analysis results of power plant switching surge by Electromagnetic Transient Program.

關鍵詞 (Keywords)

開闢突波 (Switching surge)

電磁暫態程式(Electromagnetic Transient Program)

電力變壓器 (Power transformer)

一、前言

依據長期負載預測,因應未來用電成 長需求,台電公司於中部地區設置電廠, 初期規劃設置兩部 80 萬瓩級超臨界燃煤 火力發電機組,終期可設置6部大型燃煤 火力發電機組,本文即對該廠進行開闢突 波過電壓模擬分析。 在電力系統中,開關操作是藉由開關 或斷路器來完成,即藉由開關或斷路器的 投入(閉合)達成通電的目的,及切離 (打開)達成斷電的目的。

開關操作(投入或切離)引起之暫態 電壓波或(及)電流波皆可稱為開關突 波。純電阻性的電路幾乎無開關突波,但 有儲能元件(電感及電容)存在,除非刻 意控制開關操作的條件,很難避免開關突 波發生。電路開關突波,決定於電源、電 路常數及開關操作時間。電容性元件於開 關投入時造成的突波電流與電感性元件於 開關切離時造成的突波電壓最易造成傷 害。

安大略水力電廠曾於 1990 年秋發生 主變事故[1], 其一部 990 MVA EHV 級 發電機昇壓變壓器發生事故,在接近高壓 側(HV)端點處之繞組有嚴重損壞情形, 調查結果認為可能係繞組內部於快速開關 突波下之過電壓破壞絕緣所致。明潭發電 廠主變壓器自民國 81 年至 91 年發生多次 受損情形[2],經測試分析結果,研判係 氣體斷路器 (GCB) 與隔離開闢 (DS) 於開/關(Open/Close)操作時所產生 之快速開闢突波電壓長期對變壓器絕緣破 壞所致。另台中電廠九號機於民國 93 年 5月18日初並聯時,主變T9發生損壞事 故,該廠之前認為開關突波可能為事故原 因之一[3],為確保新建之發電廠不會發 生類似事件影響發電,本文乃進行對新規 劃電廠進行開闢突波模擬分析,並研提防 制策略。

本案之電廠廠區佈置如圖1所示,一

號主變壓器至開關場距離約300 m,而六 號主變壓器(最遠)至開關場距離約 900m,另模擬距離10 km 遠之變電所 (對電廠加壓)等三種狀況之開關突波。

二、開闢突波分析模型與參數

2.1 345 kV 電力電纜模型

電磁暫態程式(Electromagnetic Transients Program, EMTP) [4]可用來模擬多相 系統的電磁暫態、電機暫態和控制系統的 暫態現象,本文即利用該程式進行開闢突 波暫態模擬。於分析時將地下電纜以分佈 參數模擬,並利用 EMTP 程式內"Cable Constants"副程式,求出分佈參數。

在本案中,電纜管道模擬成封閉的管 狀模型架構以便套入 EMTP 程式,管狀 結構之電阻假設為鋼管 [5],其外殼假設 有 0.001 m 絕緣層以便在 EMTP 模型中利 用 Enclosing Pipe Model 模擬。

EMTP 模擬單線圖如圖 2,模擬案例

分成3種:

案例一:一號發電機主變至開關場之 電纜長約 300m 進行模擬,該段電纜因較 短遮蔽層不換位,遮蔽層採單端接地方式 設置,非接地端加裝電纜被覆保護裝置 (C.C.P.U)保護,如圖 3 所示。

案例二: 六號發電機主變至開關場之 電纜長約 900m 進行模擬, 電纜遮蔽系統 採三區間換位設置, 電纜兩端之遮蔽層直 接接地,中間遮蔽層換位地方加裝電纜被 覆保護裝置(C.C.P.U or Protective Device) 保護,如圖4所示。

案例三:模擬發電廠開關廠連接至超 高壓變電所之輸電線路(架空線, 10km),開關操作時之開關突波對前述 開關場之影響。

分析開關突波時,本文使用6相模型 (3相芯線與3相遮蔽線)來模擬,其中 案例一遮蔽層採單端接地方式,案例二遮 蔽層係採標準三區間交錯換位連接方式。

圖 1 新發電廠廠區佈置圖

圖 3 案例一地下電纜架構

圖 4 案例二地下電纜架構

2.2 分析頻率

電纜常數之模型係使用單一頻率,因 此開關突波頻率必先算出,以用來計算電 纜 參 數 。 當 地 下 電 纜 傳 播 時 間 (Propagation time)為 τ ,針對單端開路 分佈常數之開關突波分析,使用之分析頻 率為 $1/4\tau$,其中地下電纜之電波傳播速率 為 193×10^6 m/sec。

本案案例一之電纜長度約 300m,因 此頻率為:

 $f = 1/(4 \times (300/(193 \times 10^6))) = 160.83 \text{ kHz}$

本案案例二之電纜長度約 900m,因 此頻率為:

 $f = 1/(4 \times (900/(193 \times 10^6))) = 53.61 \text{ kHz}$

2.3 交錯換位連接線連接方式

本案所進行之開闢突波分析,案例一 遮蔽層採單端接地方式、案例二遮蔽層係 採標準三區間交錯換位連接方式,圖5所 示為每一區間 EMTP 模型建置之實例; 每一區間之 EMTP 模型,包含該段地下 電纜之線路參數(含導體與遮蔽層)、交 錯換位連接線與接地線之阻抗等參數。

在遮蔽層交錯連接單元中所使用之交 錯換位連接線及接地線,因其長度相對較 短一般均使用集總常數做為 EMTP 之線 路模型。接地電阻亦使用集總常數做為模 型。從電纜遮蔽層到連接盒之交錯換位連 接線約 10 公尺,兩端總長約 20 公尺,假 設該電纜連接線之阻抗為 1 μ H/m ,故交 錯換位連接線阻抗設為 20 μ H。接地線電 纜一般大約長 10 公尺,假設該電纜線之 阻抗為 1 μ H/m ,故接地線阻抗設為 10 μ H。開闢場接地電阻 **0.1** Ω ,電纜線間之 接地電阻:10 Ω 。

2.4 避雷器之 EMTP 模型

氧化鋅避雷器具有良好的非線性洩流 特性,廣泛應用於輸電系統,避雷器之額 定電壓約為線對地最大電壓之 1.25~1.5 倍。

在本案所建構 EMTP 模型中之避雷器,係利用 AtpDraw 內 Type 92 非線性

電阻元件完成,圖 6 為 ATP 程式避雷器 模型之 V-I 特性曲線資料[6]。

2.5 統計性開關投入 ATP 模型

本研究利用 ATP 統計性開關,進行 開關突波過電壓之分析。統計性開關之投 入時間 "T_{close}"採隨機高斯分佈之方式自 動進行投入,其投入時間在1週期(0度 ~360 度)內隨機變化。本研究之平均投 入時間為T₀、標準差為σ,開關投入之次 數為200次,如下所示,圖7為統計性開 關 ATP 模型參數輸入實例。

2.6 模擬結果之評估

絕緣協調係考量電力設備遭受到各種 過電壓時,於兼顧技術與經濟因素,而使 得電力系統各部份設備絕緣程度做適當協 調的一個過程。

為確保電力設備之可靠性,電力設備 之絕緣水準愈高其絕緣被破壞之機會愈 小,但成本相對提高,如果絕緣水準定的 很低,成本雖低但遭受絕緣破壞之機會則 增加。

適當地選擇設備之絕緣水準再設置低 於該絕緣水準之避雷器,遇有異常電壓襲 擊時使其不致升高到設備之絕緣水準便由 傍路洩去,此即絕緣協調。

設備之絕緣曲線係由以不同峰值之衝 擊波試驗所得之 V-t 曲線,避雷器之保 護曲線即表示避雷器串聯間隔在閃絡開始 及將突波引至大地時之電壓及時間曲線, 兩者差距愈大則保護效果愈好,但會增加 製造成本,一般採 15~30% 之保護裕度。

圖 5 遮蔽層交錯連接模型

圖 6 避雷器之 V-I 特性曲線

Simulation Output Switch/UM	Formet Record Variables	Attibutes	
Switch study Statistic study Systematic study Ngm [200 Switch controls IS <u>W</u> 1	Universal machines Initialization (* Automatic (* Manuel Units (* S)	STATISTIC SWITCH NODE PH43E NAM Switch type: 0	E.
IDIST: 0	C Berunit	Order: 0 Label:	
IDIGE: 1 ESTOUT: -1 NSEED: 0	Prediction C Compensation		fige ock
OK Help		STRTQKQencel	Help

圖 7 統計性開關 ATP 模型參數輸入例

耐受電壓為 950kV,以 15%之保護裕度 計算,開關突波耐受電壓為 826kV (=SIWV(950kV)/1.15),模擬所得之開 關突波電壓如超過 826kV,則有必要進一 步分析檢討相關之改善與防制方法。

三、發電廠開闢突波模擬

3.1 模擬分析案例

本案開闢突波之模擬與分析案例分成

電力設備在 345kV 系統之開闢突波 三類,每類又分成四種不同組合進行: (1)僅有電纜線路(2)加入避雷器(3)加入避 雷器與變壓器(4)加入避雷器、變壓器及 發電機,如表1與表2,其中案例二與案 例一之模擬組合同。發電廠開闢突波 ATP 整合模型如圖 8 所示,各案例模擬 時將未用到之設備加以切離。

> 開關採統計性投入方式,每案例各投 入200 次來進行平均電壓、標準差、最高 電壓等之統計分析。

	避雷器、變壓器、發電機	分析狀況	備註
案例 1-1	未加入	開關統計性投入	200 次
案例 1-2	加入避雷器	開關統計性投入	200 次
案例 1-3	加入避雷器、變壓器	開關統計性投入	200 次
案例 1-4	加入避雷器、變壓器、發電機	開關統計性投入	200 次

表1 案例一模擬狀況

表 2 案例三模擬狀

	模擬狀況	分析狀況	備註
案例 3-1	彰工對線路加壓開關投入,評估一號變壓器高壓側之開關突波	開關統計性投入	200 次
案例 3-2	由彰濱併入系統開關投入,評估一號變壓器高壓側之開關突波	開關統計性投入	200 次
案例 3-3	彰工對線路加壓開關投入,評估六號變壓器高壓側之開關突波	開關統計性投入	200 次
案例 3-4	由彰濱併入系統開關投入,評估六號變壓器高壓側之開關突波	開關統計性投入	200 次

3.1 模擬結果

模擬結果如圖 9-圖 12、表 3-表 5 所 示,圖 9 為案例 1-1 之開關暫態波形,圖 10 為案例 1-4 之開關暫態波形,案例 1-2、1-3 之波形與案例 1-1 類似,而案例二 之波形與幅值與案例一雷同。

案例 1-1 模擬結果顯示(圖 9、表 3),地下電纜末端未加避雷器之最大開 關暫態峰值過電壓為 580.7kV,低於設備 耐受電壓(826kV),對從開關場開關投 入對此線路加壓所引起之開關暫態突波, 似無影響。

案例 1-2 模擬結果顯示,於地下電纜 末端加入避雷器,可降低開關暫態突波之 最大峰值,增加設備對開關暫態突波之保 護裕度,對後面升壓變壓器亦形成防火 牆,達到保護設備之目的。

案例 1-3 對變壓器進行加壓模擬結果 顯示,於變壓器高壓側之最大開關暫態峰 值過電壓為 565.6kV,亦遠低於設備耐受 電壓(826kV),對變壓器之絕緣應不致 產生絕緣破壞現象。

案例 1-4 模擬發電機併入系統之開關 突波,模擬結果顯示,在正常運轉併入系 統下,最大開關暫態峰值過電壓為 311.8kV,相對較前述案例為小。

案例 2-1 模擬結果顯示,地下電纜末 端未加避雷器之最大開關暫態峰值過電壓 為 586.6kV,因本線路較長導致最大開關 暫態峰值過電壓,較案例 1-1 稍大,但仍 低於前述設備耐受電壓(826kV),對從 開關場開關投入對此線路加壓所引起之開 關暫態突波,似無影響。然從案例 2-2 至 2-4 模擬結果顯示,開關暫態突波較案例 2-1 低。

圖 11 為案例 3-1 之開關暫態波形,圖 12 為案例 3-4 之開關暫態波形,案例

三之幅值較案例一、二低。

由案例 3-1 模擬結果顯示,從彰工對 系統輸電線路加壓,在一號主變高壓側所 產生之最大開關暫態峰值過電壓為 526.4kV,低於設備耐受電壓(826 kV),從開關場開關投入對系統線路加 壓所引起之開關暫態突波,對主變之絕緣 應不致產生絕緣破壞現象。

案例 3-2 模擬結果顯示,於彰濱 E/S 開關操作將此線路併入系統,在一號主變 高壓側所模擬到開關暫態突波之最大峰值 只有 303.2kV,此現象與理論實測頗為接 近。

案例 3-3 模擬結果顯示,由彰工對系統輸電線路加壓,在六號主變高壓側所產 生之最大開關暫態峰值過電壓為 489.5kV,低於設備耐受電壓(826 kV),該值較一號主變高壓側之最大開 關暫態峰值為小,主要為該段電纜長度較 長所致。

案例 3-4 模擬結果顯示,在六號主變 高壓側所模擬到開關暫態突波之最大峰值 只有 303.2kV,遠低於設備耐受電壓 (826kV),對變壓器之絕緣應不致產生 絕緣破壞現象。

四、結論

本文使用電磁暫態程式建立彰工發電 廠 345kV 地下電纜輸電系統模型,模擬 一、六號主變至開關場地下電纜之開關突 波效應,結果顯示針對線路加壓未裝置避 雷器時,開關場加壓至一號主變地下電纜 之最大暫態電壓為 580.7kV,而加壓至六 號主變地下電纜之最大暫態電壓為 586.6kV。裝置避雷器後之模擬結果顯 示,可降低最大暫態電壓突波值,最大值 分別為 564.3kV 與 556kV,增加設備對開 關暫態突波之保護裕度,對後面升壓變壓

圖 8 發電廠開關突波 ATP 模型

圖 9 案例 1-1 之開關暫態波形

圖 10 案例 1-4 之開關暫態波形

	Mean Voltage (p.u.)	Standard De- viation (p.u.)	Mean+3σ (p.u.)	Base Voltage (kV)	Peak Voltage (kV)	Withstand Voltage (kV)	Evaluation
案例 1-1	1.7188	0.0817	1.9639	295.7	580.7	826	OK
案例 1-2	1.6898	0.0729	1.9085	295.7	564.3	826	OK
案例 1-3	1.6910	0.0739	1.9127	295.7	565.6	826	OK
案例 1-4	1.0268	0.0092	1.0544	295.7	311.8	826	OK

表3 案例一開關統計性投入之最大峰值電壓

表4 案例二開關統計性投入之最大峰值電壓

	Mean Voltage (p.u.)	Standard De- viation (p.u.)	Mean+3σ (p.u.)	Base Voltage (kV)	Peak Voltage (kV)	Withstand Voltage (kV)	Evaluation
案例 2-1	1.7333	0.0835	1.9838	295.7	586.6	826	OK
案例 2-2	1.6948	0.0618	1.8802	295.7	556.0	826	OK
案例 2-3	1.6952	0.0608	1.8776	295.7	555.2	826	OK
案例 2-4	1.125	0.0019	1.1307	295.7	334.3	826	OK

表 5 案例三開關統計性投入之最大峰值電壓

	Mean Voltage (p.u.)	Standard De- viation (p.u.)	Mean+3σ (p.u.)	Base Voltage (kV)	Peak Voltage (kV)	Withstand Voltage (kV)	Evaluation
案例 3-1	1.5045	0.0919	1.7802	295.7	526.4	826	OK
案例 3-2	1.025	0.0001	1.0253	295.7	303.2	826	OK
案例 3-3	1.3933	0.0874	1.6555	295.7	489.5	826	OK
案例 3-4	1.025	0.0001	1.0253	295.7	303.2	826	OK

圖 11 案例 3-1 之開關暫態波形

圖 12 案例 3-4 之開關暫態波形

器亦形成防火牆,達到保護設備之目的。 對變壓器進行加壓模擬結果顯示,於變壓 器高壓側之最大開關暫態峰值分別為 565.6kV 與 555.2kV,均低於設備耐受電 壓(826kV),對變壓器之絕緣應不致產 生絕緣破壞現象。發電機併入系統之開關 突波,模擬結果顯示,在正常運轉併入系 統下,最大開關暫態峰值分別為 311.8kV 與 334.3kV,相對較前述案例為小,開關 突波對設備之影響最小。

本案例模擬之最大開關暫態突波值, 即使未裝置避雷器,電力設備仍有 63.6% 與 62%之保護裕度,該值遠大於 IEEE/ANSI 所建議的 15%的標準,因此 開關場加壓至一、六號主變地下電纜之開 關突波,不致對 GIS 設備或地下電纜之開 關突波,不致對 GIS 設備或地下電纜造 成不良影響。若裝置避雷器,則保護裕度 可提升至 68.4%與 70.9%。雖未裝置避雷 器電力設備對開關突波之保護裕度可達六 成,建議仍需在變壓器與電纜間加裝避雷 器,以做為變壓器針對雷擊突波之保護。

五、參考文獻

[1] A.S. Morched, L. Marti, R.H. Brier-

ley, J.G. Lackey, "EHV Geneator Transformer Failure Analysis", IEEE Transactions on Power Delivery, Vol. 11, No. 2, April 1996.

- [2] 廖 順 安、 吳 洋 一,"明 潭 發 電 廠 345kV GIS 開闢突波對主變壓器影響 之改善研究,"台電綜合研究所,民國 93 年 8 月。
- [3]台中發電廠,中九機首次併聯主變壓器 T9 故障事故報告,台灣電力公司報告,民國 93 年 6 月。
- [4] Alternative Transient Program Rule Book, Leuven EMTP center, Belgium,1987.
- [5] Tokyo Electric Power Company, Switching Sequence and Surge Study on EHV Long Cable Transmission Lines, April 2005.
- [6] 廖清榮、楊金石,"南科 345kV 電力 電纜開闢突波對園區用戶電力品質之 影響,"台灣電磁相容研討會,台北 市,民國 92 年 10 月。